Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling

نویسندگان

  • Adrian vSovsi'c
  • Elmar Rueckert
  • Jan Peters
  • Abdelhak M. Zoubir
  • Heinz Koeppl
چکیده

Recent advances in the field of inverse reinforcement learning (IRL) have yielded sophisticated frameworks which relax the original modeling assumption that the behavior of an observed agent reflects only a single intention. Instead, the demonstration data is typically divided into parts, to account for the fact that different trajectories may correspond to different intentions, e.g., because they were generated by different domain experts. In this work, we go one step further: using the intuitive concept of subgoals, we build upon the premise that even a single trajectory can be explained more efficiently locally within a certain context than globally, enabling a more compact representation of the observed behavior. Based on this assumption, we build an implicit intentional model of the agent’s goals to forecast its behavior in unobserved situations. The result is an integrated Bayesian prediction framework which provides smooth policy estimates that are consistent with the expert’s plan and significantly outperform existing IRL solutions. Most notably, our framework naturally handles situations where the intentions of the agent change with time and classical IRL algorithms fail. In addition, due to its probabilistic nature, the model can be straightforwardly applied in an active learning setting to guide the demonstration process of the expert.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M

Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...

متن کامل

Evaluation of Tests for Separability and Symmetry of Spatio-temporal Covariance Function

In recent years, some investigations have been carried out to examine the assumptions like stationarity, symmetry and separability of spatio-temporal covariance function which would considerably simplify fitting a valid covariance model to the data by parametric and nonparametric methods. In this article, assuming a Gaussian random field, we consider the likelihood ratio separability test, a va...

متن کامل

Nonparametric Bayesian Inverse Reinforcement Learning for Multiple Reward Functions

We present a nonparametric Bayesian approach to inverse reinforcement learning (IRL) for multiple reward functions. Most previous IRL algorithms assume that the behaviour data is obtained from an agent who is optimizing a single reward function, but this assumption is hard to guarantee in practice. Our approach is based on integrating the Dirichlet process mixture model into Bayesian IRL. We pr...

متن کامل

Literature Review

Reinforcement learning is an attractive method of machine learning. However, as the state space of a given problem increases, reinforcement learning becomes increasingly inefficient. Hierarchical reinforcement learning is one method of increasing the efficiency of reinforcement learning. It involves breaking the overall goal of a problem into a hierarchy subgoals, and then attempting to achieve...

متن کامل

Using Label Propagation for Learning Temporally Abstract Actions in Reinforcement Learning

Temporal abstraction plays a key role in scaling up reinforcement learning algorithms. While learning and planning with given temporally extended actions has been well studied, the topic of how to construct this type of abstraction automatically from data is still open. We propose to use the label propagation algorithm for community detection in order to construct extended actions, within the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018